Design of High-Accuracy Multiple Flyby Trajectories Using
Constrained Optimization

Dennis v. Bymes*
1.arry K. Bright!

Jet Propulsion l.aboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, Ca 91109

"Member Technical Staff, Member AIAA, Member AAS
1 Member Technical Staff




INTRODUCTION

Over the past two decades the extremely difficult problem of Efficiently
finding optimal trajcctories which involve close flyhys of multi ple gravitating’ bodies
has been addressed by many investigators using a variety of met] 1ods. Whereas the
method and particular formulation of themethod described in this paper arcin part.
directly related to several of those methods, a novel way of splitting the trajectory
into legs and the! continued improvement of computing capability of modern
computer workstations has allowed for a significant improvenient in sped, ease of

usc, and accuracy of the resulting trajectory desigri.

The trajectory optimization technique described in this paper provides
several distinct advantages over previous formulations. First, fully numerically
integrated trajectory modeling is used. That is, noapproximations to the trajectory
arc made and the inclusion of any level of complicated force models desired is
allowed. Second, only trajectory propagation is usecd so there is no requirement for
solutions of multiple boundary value problems as i ntermecdiate steps before
optimization. This is accomplished by the novel method of splitting the trajectory
into independent legs, which arc then subjected to constrained optimization. Third,
each of the trajectory legs may be specified by any convenient set of parameters
particularly uscful for that leg. Any of these paraincters may then be subject to
constraints. Fourth, the nonlinear optimization pi1oblem is solved by solving a
sequence of linear problems which converges to the optimalnonlinear solution.
I'ifth, the robustness of this formulation requires 1 ittle or no user interaction with
the optimization once a feasible problem has been pod. Finally, although it is not
the subject of this paper, our software implementation of” this method makes use of’
IFortran 90, modern techniques of object oriented programining, and extremely fast
UNIX based workstation computers.

Optimal trajectorics are determined starting from a specified state vector or
launch conditions, consistent with a specified set of constraints and a specified {lyby
body sequence, and, optlionally,inthe case of interplanetary t rajectories, meeting
certain arrival conditions. Trajectory modeling is basced on numerical i niegration of
the equations of motion of a point-mass spacecraft subject to gravitational
accelerations. Additional] effects modeled are impulsive and/oy finite motor burns
and solar ])rc.s.sure. The gravitational models i nclude, in additionto the inversc-



square acceleration duc to the planetary central body: point-mass gravitational
accelerations ductoany combination of sun, planets and satellites plus acceleration
duc to the oblateness of planetary central bodies, Trajectory constraints m a vy
include flyby altitudes, b-planc angles, latitudes, times of closest approach to flyby
bodies, inclinations or essentially any other orbital paramecter with respect to either
the primary or secondary body. There may also be constraints on mancuvers such
as time, direction, location and mode of execution. Any of these constraints may be
equalily, inequality or bounds constraints, and will, of course, be closely related o
mission operations requirements and scicnee objectives.

The method of solution used is a parameter optimization algorithm based on
a series of lincarizations of the “real” highly nonlinear proble . The optimization
algorithm changes the independent variables (a series of estimated states along the
trajectory, usually at flybys) on successive iterations to rcduce the cost function
(total AV).1)ue to the complexity of the problem, it may son ictimes be necessary for
the user to actively control the optimization process in order to achieve convergence.
A variety of control procedures arc available.

0171’1 M1 ZATI ON PROBI.EM STRUCTURE
Trajectory Structure

A complete trajectory is broken up into a sequence of user-defined trajectory
legs. The legs are contiguous in time. The boundary between two successive
trajectory legs is referredto as a trajectory breakpoint. Oncach trajectory leg there
is auniquely distinguished point referred to as the control point for that leg. A set
of six control point variables is defined at each control pointbytheuser. The set is

chosen from a wide range of possibilities separately for cachtrajectoryleg.

The control point variables collectively, over all legs of the trajectory,
dctermine the initial conditions for trajectory Propagationandarc a subset, of the
independent variables for optimization. Any leg Of the trajectory may optionally
have an additional three independent variables which are associated with a
maneuver at the beginning of the trajectory leg. These AV variables may be
included in the independent variable set inorderto impose constraints on them.
I'inally, besides the control point variables and the: optional AV variables, the

3




imdependent variables include the times of the breakpoints between trajectory legs.
Since maneuvers always occur at the beginning of trajectory legs, this permits

optimization of manecuvers times if these variables are free parameters.

13reakpoints and control points occur in alternating fashion along a
trajectory. For example, on a trajectory withnlegs, they occur in the following

order:
B0,C1,B1,C2, ..., Cn, Bn,

where the Bi's are breakpoints and the Ci's are control points. The entire trajectory

begins at the initial breakpoint BO and ends at the terminal breakpoint, Bn.
Trajectory Generation

On a given iteration of the optimization procedure, atri a] trajectory must be
generated from the current values of the independent variables. These legs of a
trajectory arc generated separately and independently. Jachleg is the result of two
trajectory propagations: first, a reverse (i .c., backwards in time) propagation fromn
the control point for theleg to the epoch of the starting breakpoint of the leg;
second, a forward propagation from the control point to the ending breakpoint of the
leg. The trajectory gencration process is complete when all the trajectory legs have
been determined in this way. Although the current implementation of the software
processes the legs sequentially, since the legs are i ndependent this formulation is

ideal for possible mmplementation using parallel processors.

At each trajectory breakpoint there is an "incoming" velocity, which results
from forward propagation of the trajectory from the preceding control point, and an
“outgoing” velocity, which results from reverse pro] »agation of the trajectory from
the succeeding control point. ‘I'bus, while the prop agation procedure guarantees
that a trajectory is continuous within a leg, there will in general be discontinuities
in both position and velocity at the breakpoints between legs. 1n order to achieve a
final trajectory that is continuousin position, constraints arc asutomatically imposed
on the optimization requiring that position discontinuities at breakpoints be zero.
Velocity discontinuities, on the other hand, cannot always he ehiminated, since

mancuvers may be physically necessary in order to fly the trajectory within the




constraints. Within the! availahle degrees of freedom, however, the user may choose
to impose! constraints requiring that velocity discontinuities at selected breakpoints

be reduced to zero.

Placement of Breakpoints and Control Points

Forreasons that ghould be clear from the py eceding discussion of trajectory

generation, mancuvers that are subject to optimization may only occur at trajectory
breakpoints. Thus, breakpoints will normally be placed at points on the! trajectory
where AV'S arerequired or expected to be needed. Apart from this consideration,
the placement of trajectory breakpoints is arbitrary. As indicated above, the control
point for a leg occurs between the epochs defining the bounding breakpoints of the
leg. Otherwise, control points may beplaced arbitrarily by the user. In fact, a
control point and a breakpoint may coincide.

A trajectory leg may contain zero, onc or more! flybys of Gravitating bodies.In
normal practice, trajectory breakpoints will be at or near the expected maneuver
epochs, with at least onc between significant gravity-assist flybys. A leg will
typically contain one flyby; the control point for theleg will typically be placed at or
near the periapsis of the flyby. None of these SitUéitjons is in fact required by the
m e¢thod however. Note! that non-zero mancuvers will in genera] occur at theinitia l
breakpoint, B0, and at the terminal breakpoint, Bn, if not otherwise constrained.

ITERATIVE SOLUTION OF THE OPTI MI ZATION 1'1{0111.F:M

The optimization problem is a highly nonlinear one due to the nonlinear
nature of the multi-body equations of motion. The nonlinear problem is solved as
the! limiting case ofa scrics of linear (or "lincarized") problems. ach linearized
problem is itsclf solvediteratively as a sequence of problems through a process
called “re-weighting the cost function”.

Thus, the mecthod consists of a loop-within-a-loop structure, with the inner
iteration controlling the re-weighting process and the outer iteration controlling the
re-lincarization process. When both iterati ons have converged, thie "real" nonlinear

problem with the "real” sum-of- magnitudes cost function has heen solved.




The cost functionthat is minimized is the sum of the AV magnitudes. For

numerical reasons, an indirect approach tocomputing this cost function is used.
The cost function is:

AViotal = w1AV124 W2AV2 -t . . . +wnAVp2

where:

n = number of allowed maneuvers on the trajectory
AVi = magnitude of the ith AV vector
and Wi = scale factor or “weight” associated with t] ie ith mancuver

The wi ‘s are initially set to the somewhat arbitrary valuc of 1.0. They are
then adjusted in a series of automated "re-weighting" operations. When iterative
rc-weighting is finished, cach weight, equals

1/ (the corresponding AV)

or, expressed differently, the reciprocal of the weight equals the corresponding AV

nagnitude. The cost function, then, reduces to precisely
AV1+AV2-t...+AVy
e., the sum of the AV magnitudes, which is the "real” cost functionto be minimized.

For cach set of weights, the current linearized version of the trajectory
optimization problem is solvedby a utility linear-lcast-squarces minimization
package. When the re-weighting process converges, the resulting trajectory so] ution
is used to determine a new linearization of the nonlinear problem; the re-weighting
process is done on this new linearization, etc., until there is only a negligible change

from one lincarization to the next.




‘v

RESULTS AND EXAM PLE TRAJECTORIES

1)escriptions of the convergence behavior and solution characteristics for a
selection of different trajectory types are presented. At least several cases fromnthe
extensive set of baseline test cases usedto validate the current software
implementation will be summarized. They may include some of the following:

Galileo Interplanctary VEEGA Trajectory
Karth-Venus-F arth-Gaspra-K arth-1da-Jupiter

Galileo Satellite Tour
11 orbits of Jupiter with 1 or 2 satellite flybys per orbit
2 of the orbits with constrained Jupiter inclination

Cassini interplanetary VVEJGA Trajectory
Iarth-Venus-Ven us-E arth-Jupiter-Saiturn

Cassini Satellite Tour (Example)
approximately 40 orbits of Saturn with 0,1 or 2 flybys per orbit

sceveral orbits with constrained Saturn inclination]]

Near Earth Asteroid Rendezvous Trajectory (N KAR)

Karth-Earth-Kr os
Multiple l.unar Flyby Trajectory

The samples will be chosen to demonstrate the versatility of the method and its

application to a wide variety of current and proposed multiple flyby missions.




